

Department of Earth Sciences

University of Kashmir, Srinagar-190006, J & K

Course Structure, Marks Scheme & Syllabus

For

Under-Graduate Course

in

GEOLOGY

Effective from Academic Session 2013

University of Kashmir, Srinagar-190 006

Course Structure for Under- Graduate Course in Geology <u>Effective from Academic Session 2013</u>

<u>B.Sc. Part I</u>

Theory

Paper	Course Title	Marks
Theory	Fundamental Geology	100
Practic	al	
Related	to	Marks
Crystallog	raphy and Mineralogy; fieldwork	50

<u>B.Sc. Part II</u>

Theory

Paper	Course Title	Marks
Theory	Advanced Geology	100

Practical

Related to	Marks
Petrology& Paleontology	50

B.Sc. Part III

Theory

Paper	Course Title	Marks
Theory	Applied Geology	100

Practical

Related to	Marks
.Structural Geology and Geological Mapping; Fieldwork and Project Assignments	50

Examination Scheme:

Single Paper scheme at UG level

- I. The question paper shall be of three hours duration.
- II. Each subject shall have internal as well as external components of examination.

Internal Examination at College Level

This test shall be called as Internal Assessment Test, it shall consist of two components:-

- a. Attendance
- b. Assignment/ Project work/Midterm test

The distribution of marks in the Project work is reflected in the table as under:-

Component	Theory Paper Carrying 100 marks
Attendance	<u>5 marks</u>
	1mark (75-80%)
	3marks (80-90%)
	5 marks (90-100%)
Midterm test/Project	20 marks
Work / assignment	
	Total: 5+20=25

- i. Number of units to be covered under Internal Assessment Test shall be left to College concerned.
- ii. Composition of marks among three components of part (b) i.e. project work / assignment shall be decided by the college.
- iii. Internal Assessment Test shall be conducted in the first fortnight of August each year.
- *iv.* The topics for written test, project work and assignments will be assigned and evaluated by the concerned teacher.
- *v*. Both components of internal assessment test shall be compulsory; students failing in any component shall not be allowed to sit in the external examination.
- *vi.* Students must have a minimum 75% of attendance in each subject.
- *vii.* Student has to secure minimum of 36% percent marks in project work / assignment/midterm tests. If college offers all these, the 36% pass percentage in each component shall be applicable.

External Examination

i. There will be two types of questions in the question paper i.e. medium and long answer type of questions comprising of section A and section B.

- *ii.* In Section A there will be five medium type questions, one question with internal choice from each unit. All the five questions will be compulsory.
- iii. There will be five long answer type questions in Section B, one from each unit and the student will be required to attempt any three questions.
- iv. The distribution of marks for theory paper is reflected in the table as under:-

v. Pass percentage shall remain unchanged i.e 36% for both internal and external examinations.

Course Details follow

SYLLABUS FOR UNDER-GRADUATE COURSES IN GEOLOGY

FOR B.Sc. Part I To be implemented from 2013

Paper: Fundamental Geology100 Marks150L

Unit I	FUNDAMENTALS OF GEOLOGY 40 L
1.0	Introduction to the science of geology: Definition, branches, scope and importance, Relation with other branches of sciences, History of geology.
1.1	Contribution of physics and chemistry in the development of ideas about earth. Physics-for example, crystallography, gravity, magnetic, isostasy, earthquakes and microscopy. Chemistry – about minerals chemical bonds, crystal chemistry, solution chemistry, chemical energetic. Various geospheres. Physical properties and chemical composition of the earth and earth's crust.
1.2	Geochronology and age of Earth. Relative and absolute techniques for age determination. Radioactivity and concept of half-life, decay constant, natural radioactive isotopes. Evolution of the life through ages; Preliminary idea about faunal succession. Concept of vastness of time in Geology.
2.0	Introduction to rocks and minerals.
2.1	Rocks as natural mineral aggregates; types of rocks: igneous-plutonic and volcanic rocks; sedimentary-clastic and non-clastic rocks; metamorphic-foliated and non foliated rocks
2.2	Preliminary knowledge about the most common rock forming and economic minerals: quartz, feldspar, calcite, gypsum, olivine, augite, hornbelende, muscovite, biotite, haematite, pyrite, chalcopyrite, sphalerite, and galena.
3.0	Geology as the history of Earth. How the rocks record history – (a) Fossils (b) Mineralogy and the texture; (c) Structures; (d) Palaeogeography, Paleoclimate. Surface relief of the earth. Exogenous and endogenous process.
3.1	Weathering: definition and types, agents of weathering. Products of weathering.
3.2	Rivers: Definition, Run off, velocity, gradient and discharge. Geological work of river erosion: Corrosion, hydraulic action, attribution and related features. River transport: Solution, suspension, saltation and traction. River deposition: related features-floods plains, alluvial fans, cones, rivers terraces, delta and estuary, point bars and natural levees. Types of drainage patterns.
4.0	Groundwater: origin, occurrence and distribution of Groundwater; springs and seepages.
4.1	Zone of aeration and saturation. Water table, perched water table, porosity and Permeability, artisan water
4.2	Erosion and Deposition work by the groundwater.

Unit II	GEOMORPHOLOGY 35L
5.0	Glaciers: Definition and types, snowline, glacial movements and crevices.
5.1	Geological work of glacial erosion: plucking, abrasion, and erosional features
	cirques, horns, arêtes, Coles and Roche moutonnee. Modification of valleys by
	the glacial erosion-hanging valleys, fjords.
5.2	Glacial deposits: unstratified-till moraines, drumlins, erratic and boulder trains;
	stratified -outwash sand and gravels, rattles, eskers, crevasse fillings, varve
	Aeolian processes: Wind erosion: deflation, abrasion, Wind deposition: loess,
()	dunes, barchans, yardung, pedestal rocks.
6.0	Oceans: Topography of sea floor. – Continental shelves, slope, abyssal plains,
(1	Ocean ridges and, submarine valleys, canyons, deep-sea trenches and guyots.
0.1	Oceanic erosion: Wave action and related features. Marine deposition:
	fringing barrier and atolls
62	Eneirogenesis and orogenesis Volcanoes: types distribution and eruptional
0.2	features and products.
7.0	Fundamental concepts. Catastrophism, uniformitarianism, cycle of erosion, and
	base level of erosion.
7.1	Mass wasting: Definition, factors favouring mass wasting-Lithology,
	stratigraphy, structure, topography, climate, organisms.
7.2	Slope flowage: creep, solifluction; rapid flowage – earth flow, mudflow, debris
	flow, avalanche, landslides, and slumps.
8.0	Karst topography – Terra Rosa, lapis, sink holes, blind valleys, Caverns,
0.1	Stalactites, stalagmites, natural bridges and tunnels
8.1	Structural landforms: Fault scarps, cuesta, hogback, horst, graben, structural
0.0	domes, inversion of topography.
9.0	Chinate and fandforms: humid, sub-humid, and, semi-and.
9.1 Unit	CLOBAL TECTONICS 251
	GLOBAL TECTOMICS 25L
10.0	Introduction: Features and divisions of Earth's crust: Physical characters of
1010	continental and oceans, continental shelf, slope and abyssal plains, island arcs,
	rift valleys, mid-ocean ridges, mountain chains.
10.1	Important concepts about Earth dynamics: outline description of Contraction,
	Expansion, Plate tectonics - basic concepts and definitions, types of plate
	margins, important characters of plate margins.
10.2	Mechanism of plate movement; Mantle plumes vis-à-vis island chains.
11.0	Plate tectonics in relation to the distribution seismic, volcanic and island arc
44.4	belts.
11.1	Plate tectonic models for the origin of mountain belts: Pacific type and Andean
11.2	type. Some fundamental problems with Dista testaries. Antimatel provide C
11.2	some rundamental problems with Plate tectonics - Antipodal positions of
	basing vs. possible size of mantle convection, variable depth of asthenosphere
	basing vs. possible size of manue convection, variable deput of asthenosphere,

absence	of	subduction	zones	around	Antarctic	plate,	absence	of	required
boundary	y be	tween North	and So	uth Ame	rican plates	5			

Unit IV	MINERALOGY 25 L
13.0	Mineralogy: Introduction to mineralogy: definition of mineral, scope of
	determinative mineralogy, examples of rock forming (Silicates) minerals and ore
13.1	Scalar properties of minerals: Colour Juster and streak their definition and
13.1	verities with examples. Specific gravity: definition and mineral examples.
	Fusibility. Flourescence and phosphorescence Magnetic property: ferromagnetic
	paramagnetic and diamagnetic minerals.
13.2	Vector properties of minerals: Cleavage, parting and fracture-their definition,
	mineral examples. Hardness: definition, Moho's scale of hardness, determination
12.2	of hardness of minerals.
13.3	characters and mode of occurrence of the characteristic members from following
	groups: Quartz Feldspar Mica Amphibole Pyroxene Olivine Garnet Chlorite
	and Carbonate.
14.0	Mineral optics: Elements of optics. Optics of isotopic medium – refractive index,
	Snell's law of critical angle, anisotropic media.
14.1	Polarization and interference of light. Polaroid, polarizing microscope-
14.0	construction and use. Use of accessory plates. Pleochroism and Birefringence.
14.2	and biaxial crystals. Ontic sign
14.3	Optical properties of minerals: Forms, cleavage, fractures and parting, refractive
1 110	index and relief, Becke line and its use. Colour and Pleochroism: Pleochroic
	scheme of common minerals.
14.4	Properties under crossed polarisers: Interference colours, Michel Levy chart and
	its use in determining thickness, path-difference, birefringence or order of
TT \$4 \$7	Interference Colour.
Unit v	CRYSTALLOGRAPHY 25 L
15.0	Crystallography: Introduction to crystallography, geometrical nature of order of
	crystals. Translation vectors, planar and space lattices. Concept of point group
	and 32 classes.
15.1	Morphology of crystals: Definition of crystal. Face, edge and solid angle. Law of
	of Weisis Miller indices I and of Pationality of indices
16.0	48 symmetry and twining: Growth of crystals showing combination of forms
10.0	Study of normal classes of crystal systems {vis-a-vis crystallographic axes.
	symmetry elements & general forms}.
16.1	Crystal growth and twining: Growth of crystals from solutions and from a melt
	under controlled conditions, crystal growth in open fractures, solution cavities
	and vesicles.

16.2	Twining in crystals: Types and causes, different twin laws with examples.
17.0	Crystallinity and forms of minerals: Crystallized, crystalline and cryptocrystalline and amorphous. Habit of minerals–elongated, tabular, flattened and equant. Form of crystalline and cryptocrystalline aggregates–types, examples and use in mineral identification.
17.1	Crystal chemistry of minerals: Concept of crystal structure of minerals: Dimorphism, polymorphism and pseudomorphism, isomorphism and solid solution.

Suggested Readings:

Holmes, A., 1996: Principles of Physical Geology, EUBS, Chapman.

Judson, S. and Kaufman, M. E., 1990: Physical Geology, Prentice Hall.

Press, F. and Seiver, R., 1989: The Earth, W. H. Freeman.

Terrly, G. W., 1958: Principles of Petrology, Mathuen.

Gribble, D. D., 1988: Rutley's Elements of Mineralogy, DBS Publications.

Tarbuck, E. J. and Lutgens, F. K., 1997: Earth Science, Prentice Hall.

Lutgens, F. K. and Tarbuck, E. J., 1998: Essentials of Geology, Prentice Hall.

Note for paper setter

The format of the question papers shall be as per the revised format in vogue in the university since 2013. A sample copy of the question paper shall be provided to the examiner for reference and guidance.

Course content and no. of Lectures for Practical course:

1. Field work Minimum 10 days

- 1. Study of landforms, erosional and depositional features
- 2. Handling of Clinometer and Brunton compass for Measuring dip and strike, and plotting of field data on toposheets.

3. Laboratory work 23 Lectures:

Practical work related to	No. of Lectures
1.Crystallography	<u>06</u>
a) Demonstration of space lattice, model-Galena, Fluorite, Sphalerite, Pyrite	
and Calcite.	
b)Clinographic projection of the following crystals form:	
Cube,Octahedron,Zircon,Beryl,Calcite and Gypsum	

2.Mineralogy	<u>17</u>
Megascopic: Study of the physical properties (habit, color, hardness, cleavage, luster, streak and specific gravity) of important rock-forming minerals as included in the theory paper	04
Optical mineralogy: a) Petrological microscope: Neat drawing, labeling its parts and their functions.	13
b) Study of optical properties (Form, color, Cleavage, Relief, Pleochroism, Isotropism, interference colors extinction, twinning and alteration) of important rock forming minerals as included in the theory paper. Clinographic projections of the following crystals forms: Cube, Octahedron, Zircon Beryl, calcite and Gypsum.	

Marks distribution for Practical:

Maximum Practical marks : 50

• Internal Practical 25 marks

(This will include fieldwork of 15 marks, and internal laboratory work of 10 marks)

• External Practical 25 marks

Note:

• Fieldworks will form a compulsory component of the practical and should be of a least 10 days duration. The assigned 15 marks will be given internally by the teacher in-charge of the fieldwork, and will be added to the marks secured in internal laboratory work to pass the internal practicals.

SYLLABUS FOR UNDER-GRADUATE COURSES IN GEOLOGY

FOR B.Sc. Part II To be implemented from 2014 Paper:Advanced Geology 100 Marks

150L

Unit I	STRATIGRAPHY 25
1.0	Stratigraphy: Brief knowledge of Stratigraphic classification and terminology:
	Principles of Stratigraphy.
1.1	Geological timescale; stratigrapahic correlation; imperfection of geological record.
1.2	A brief knowledge of the following Precambrian geological system/groups of India
	with special reference to their classification, distribution, lithology and economic
	importance in their e localities: Dharwar, Aravalli, Cuddapa and Vindhyan.
2.0	Straitgraphy of the following Phanerozoic sgeological system/groups with special
	reference to their lithology and fossil content: Paleozoic succession of Kashmir.
	Triassic of Spiti, Jurassic of Kuch, Cretaceous of Trachnapalli. The Siwalik; and the
	Karewas of Kashmir.
Unit II	PALAEONTOLOGY45L
3.0	Paleontology: Elementary ideas about origin of life, classification of organisms
3.1	Fossils, their characters, conditions necessary for fossilization; types of preservation
	and occurrence. Application of Paleontology.
3.2	Linnaean or Binomial code of nomenclature of organisms.
4.0	Elementary concept of vertebrates Paleontology with special reference to siwaliks
	vertebrate fauna.
4.1	Introduction to micropaleontology and microfossils and their application.
4.2	Introduction to Paleobotany with special reference to Gondwana plant fossils
5.0	Theories of evolution and palaeontological data on evolution.
5.1	Detailed morphology, classification, geological and geographical distribution of the
	following:
	(1) Brachiopoda (2) Bivalvia (3) Gastropoda (4) Cephalopoda (5) Graptoloida
	(6) Anthozoa (7) Echinoidea (8) Trilobita
5.2	Elementary ideas about Forminifora, Ostracoda, Radiolarian and Conodonts.
6.0	Evolution of Man, Horse & Elephant.
7.0	Causes of migration and dispersal.
7.1	Extinction of organisms with special reference different hypothesis for the extinction
	of dinosaurs.
7.2	Introduction of Palynology and its applications.
7.3	Application of Paleontological data in paleogeographic reconstructions.
	Paleontological evidence in favor of continental drift.
Unit III	IGNEOUS PETROLOGY25 L
8.0	Introduction to Petrology: Nature and scope of petrology: Difference between
	Petrology, petrography and petrogenesis.
8.1	Texture and structure of igneous rocks: Large structures- block lava, amygdaloidal

	lava, and vesicular structures, pillow structures, pillow structure, flow structures,
	sheet and platy structures, prismatic and columnar structures. Crystallinity,
	granularity (phaneric and aphanitic), shapes of crystals, mutual relations of crystals,
	equigranular and unequigranular textures, porphyritic, poikilitic, opthitic, intersertal
	and intergranular textures, directive textures, intergrowth textures. Reaction textures.
	Reaction structures – corona and kelyphitic borders.
8.2	Composition and constitution of magma: Definition of magma, composition of
	magma, types of magma, physico-chemical constitution of magma, primary magma.
9.0	Processes resulting in diversity in igneous rocks: Fractionation and differentiation –
	Gravity settling, filter-press differentiation, flow diffusion and gaseous transfer
0.1	within magma; liquid immiscibility, mixing of magmas. Assimilation.
9.1	Nomenclature and description of common igneous rocks: Granite, pegmatite, syenite,
	diorite, gabbro, granodiorite, norite, anorthosite, peridotite, pyroxenite, dunite,
	Trachyto, degita, andogita, baselt, phonolite
0.2	Classification of igneous rocks: Principles of classification. CIPW classifications
9.4	IIIGS classification and tabular classification
Unit IV	SEDIMENTARY & METAMORPHIC PETROLOGY 25 L
10.0	Sedimentary rocks: Processes involved in formation of sedimentary rocks: erosion.
1000	transportation, deposition, and diagenesis and lithification.
10.1	Texture: size, roundness, sphericity. Surface texture, fabric, porosity and
	permeability. Grain size, grade scale, and methods of size analysis by sieving. Use of
	textural properties. Structure: primary, secondary and biogenic structures. Major
	primary structure, i.e; cross bedding, cross lamination, horizontal bedding, graded
	bedding, sole marks, ripple marks, rain-imprints and dunes.
10.2	Classification of sedimentary rocks: Folk's classifications of carbonate rocks.
	Classification of sandstones, greywacke and arkose.
11.0	Metamorphic rocks: Definition of metamorphism Controls of metamorphism – bulk
	composition and motivating forces in metamorphism- heat, pressure and chemically
	active fluids. Types of metamorphism – Contact, cataclastic, regional.
11 1	Metasomatism, anataxis, palingenesis, migmatization.
11.1	relation of minorals in metamorphic rocks. Shape of filleblastic medoca granulose
	schistose gneissose and augen structures
11.2	Nomenclature and description of metamorphic rocks: Phyllite slate schist gneiss
11,2	amphibolite marble quartzite granulite eclogite
Unit V	ECONOMIC GEOLOGY 30L
12.0	Ore minerals and gangue. Examples of common ore minerals. Concept of
	metallogenic epochs and provinces.
12.1	Classification of minerals deposits – genetic an associational parameters.
12.2	Ore – forming fluids, means of transport and minerals deposits.
12.3	Pegmatite and pegmatite deposits. Deposits of mica with special reference of India.
12.4	Oceanic mineral resources (manganese nodules).
12.5	Elementary idea of hydrothermal deposits with reference to: a) Porphyry copper
	deposit b) Vein deposits of tin and tungsten.
12.6	Ores formed by metamorphic processes.

12.7	Supergene enrichment deposits.
12.8	Mode of occurrence of following minerals deposits in India: Banded iron formation,
	Gold, Thorium deposits. Exploration, evaluation, exploitation and mining of minerals
	resources: metallic, non metallic, radioactive and fossil fuels and ground water.
	Placer & residual deposits.

Suggested Readings:

Shork, R. Rand, Twenholf, W. H., 1987: Principles of Invertebrate Palaeontology, CBS Pubs. New Delhi.

Nicholson, H. A., 1993: Principles and History of Palaeontology, Discovery Pubs. Home, New Delhi.

Wood, H., 1998. Paleontology-Invertebrate. CBS Pub. New Nelhi.

Stearn, C. Wand Carroll, R. L., 1994: Palaeontology–The Record of Life, John Wiley.

Krishnan, M. S., 1997: Geology of India and Burma, CBS Pubs, New Delhi.

Wadia, D. N., 1996: Geology of India, Macmillan & Co.

Waller, J. M., 1960: Stratigraphy–Principles and Practices. Harpar& Row Pubs

Note for paper setter

The format of the question papers shall be as per the revised format in vogue in the university since 2013. A sample copy of the question paper shall be provided to the examiner for reference and guidance.

Course content and No.of Lecture distribution for practicals

Practical work related to	No. of Lectures
1.Paleontology	
Study of morphological characters of the selected genera- Brachiopoda, Bivalvia,	15
Gastropoda, Cephalopoda, Trilobita, Echinoidea, Graptoloidea and Anthozoa.	
2.Petrology Study in hand specimen and under microscope of the mineral composition, textures and structures of important igneous sedimentary and metamorphic rocks as included in theory paper.	22
3. Megascopic study of :	15
i) Ore minerals of cu, Fe, Al, Mn, Pb and Zn.	
ii) Industrial minerals- refractory and radioactive.	
iii)Precious and semi-precious stones-diamond, ruby, sapphire, emerald, opal,	
jasper, agate and garnet.	

Marks Distribution for practicals

Internal Practicals:	25 Marks
External Practicals:	25 marks

SYLLABUS FOR UNDER-GRADUATE COURSES IN GEOLOGY

FOR B.Sc. Part III To be implemented from 2015 Paper: Applied Geology 100 Marks

150L

Unit I	GEOCHEMISTRY& GEOPHYSICS 35 L
1.0	Introduction to geochemistry: Crystal chemistry-Chemical bonds, coordination
	number, radius ratio, ionization potential, electro-negativity. Polymorphism,
	isomorphism, atomic substitution.
1.1	Colloids in geological systems: kinds of colloids, ion exchanges, and geological
	evidence for earlier colloids.
1.2	Cosmic abundance of elements; Silicate structures - Introduction.
2.0	Gold Schmidt's geochemical classification of elements.
2.1	Distribution of the elements in igneous, metamorphic and sedimentary rocks.
3.0	Introduction to geophysics: The science and domains of Geophysics; Spheroidal shape of earth, magnetic field of the earth. Exploring Earth's interior with geophysical techniques
3.1	The utility of geophysics: How to locate the deposits of the minerals, energy resources.
3.2	Earth's thermal history: Heat conduction and factors controlling heat flow. Thermal gradient of the earth. Convection currents-evidence and models.
4.0	Gravitational Field: The concept of gravity; its variation with latitude, altitude, topography, and subsurface density variations. Gravity instruments: Pendulum gravimeters Ship borne measurements
4.1	Units of gravity, gravity anomaly - definition, types (Free- air, Bouguer), local and regional concepts. Use of gravity method for locating mineral resources and petroleum reservoirs. Detection of cavities at engineering sites.
5.0	Isostasy: Observation; Pratt and Airy schemes of the isostatic compensation, elastic crust on viscous mantle.
Unit II	SEISMOLOGY & HYDROGEOLOGY 25 L
6.0	Seismology: What is an earthquake? Effects of an earthquake-seismic waves and damage to structures and natural objects. Seismographs Basic features of seismograms; Magnitude and intensity of an earthquake.
6.1	Types of earthquake - tectonic, volcanic and man made. Tectonic earthquake and creation of new faults. Elastic rebound theory - statement and geodetic evidence.
6.2	Earthquake location: Focus, epicentre and hypocenter; Earthquake belts; Focal depth of earthquakes. Earthquake focal mechanisms - how these are obtained.
7.0	Seismic wave reflection and refraction. Structure of the Earth: Crust, mantle; Outer core, inner core; wave speed and density distribution.
7.1	Earthquake Prediction: Need, definition, possibility, results: Seismic gap theory
8.0	Introduction to hydrogeology: occurrence of groundwater, water table, acuifer and its
	types (unconfined, confined and perched).

8.1	Hydrological properties of rocks-porosity, permeability, specific yield, specific
	retention, hydraulic conductivity, transmissivity, and storativity. Hydrological
	classification of geological formations.
9.0	Hydrological cycle and its components. Water quality standards for drinking
	purposes.
9.1	Fundamentals of groundwater exploration – geological and geophysical methods.
Unit III	STRUCTURAL GEOLOGY 40 L
10.0	Basic concepts of field geology: Maps – definition, Topographic and geological
	maps.
10.1	Dip and strike of stratified rocks: horizontal, inclined beds. True dip and apparent
	dip. Plunge and pitch of linear structures. Outcrop pattern of horizontal beds. Vertical
	beds and inclined beds, inliers and outliers. True thickness and vertical thickness.
	Width of the outcrop, relation betweens true thickness and the width of outcrop.
10.2	Nature of the problems of overturned strata. Use of different sedimentary features for
	determination of the overturned strata. Sedimentary structures – ripple marks, cross
	bedding, graded bedding, mud cracks, rain-imprints. Pillow lava, vesicular tops of
	lava beds; Relationship of cleavage with bedding. Paleontological methods.
11.0	Mechanical principles – Introduction about force, couple, stress & strain.
11.1	Stress; definition of force and stress. Normal and shear stress. Basic cosnept of stress
	ellipse. Strain definition and computation of changes in line length. Geological
	examples. Basic concept of strain ellipse.
11.2	Golds: Definition of folds, inflation, Classification of folds. Types of folds.
12.0	Unconformities: Definition, types of unconformities. Criteria for recognition of
	uncosnformities. Definition, concordant pluton: sills, laccoliths, lopoliths, and
	phacoliths. Discordant pluton: dykes, volcanic vents, ring dyskes.
12.1	Joints- Definition, attitude of joints, joint sets and joint system. Geometrical
	classification of joints-strike joints, bedding joints, dip joints. Oblique and diagonal
10.0	joint.
13.0	Faults: Definition, attitude of fault planes and symbols. Components of fault – dip,
10.1	hade, rake, hanging wall, footwall, fault line, fault zone, throw and heave.
13.1	Classification of faults (1) based on relative movements: thrust fault, gravity fault,
	strike-slip fault (wrench faults), sinistral and dextral faults, transcurrent and
14.0	transform faults.
14.0	of strata, features characteristic of fault plane; slickonside, gouge, fault brassics
	mylonites silicification and mineralization differences in sedimentary facies
	Physiographic criteria: scraps s triangular facets. Offset streams
14.1	Lineation and Foliation: Overview and basic concents
17,1	Elifeation and Fonation. Overview and basic concepts.
Unit IV	GEOLOGY AND REMOTE SENSING 30 L
15.0	Societal Geology: Fundamental concept (environment, population needs and
	planning.
15.1	Mineral resources vis-à-vis population needs, environmental impact of exploration
	and processing of mineral resources on air, soil and surface and subsurface water.
16.0	Water supply and water use - human, agriculture and industrial.
16.1	Societal implications of major hydroelectric, nuclear and industrial projects.

17.0	Earth processes and geological hazards -Introduction.
17.1	River flooding: magnitude and frequency of floods, urbanization and flooding, nature
	and extent of flood hazard. Coastal hazards: tropical cyclones, tsunamis and coastal
	erosion
18.0	Earthquakes: Scale of intensity related damage, preventive measures.Landslides:
	Slope stability, causes of landslides, anthropogenic activity and landslides,
	prevention and correction of landslides.
18.1	Volcanoes: Effects of volcanic activity, prediction of volcanic activity, adjustment to
	and perception of volcanic hazard.
19.0	Remote sensing: Concept and foundation of RS (Electromagnetic spectrum).
19.1	Overview of RS technology.Landsat,IRS,SPOT,MODIS
19.2	Interaction of Electromagnetic waves with Earth surface features (water, soil, rocks,
	vegetation) – Introduction.
20.0	Application of remote sensing: geomorphological mapping, geological hazards
	assessment, hydrology and land use planning.
20.1	Introduction to GIS and its applications.
Unit V	FUEL GEOLOGY 20L
21.0	Origin of petroleum – Organic versus inorganic theories, transformation of organic
	matter into petroleum (geochemical aspects, pressure, temperature, depth of
	occurrence). Limiting conditions of petroleum occurrence.
21.1	Reservoir rocks – definition and types. Source rocks; definition and types.
21.2	Reservoir Traps, classification (structural, stratigraphic); Cap rocks – types.
23.0	Migration and accumulation of petroleum: primary and secondary migration.
23.1	Coal; Introduction; Two principal periods of coal formation; Constituents of coal:
	Rank and grade of coal; Varieties of coal (physical and chemical characters); Origin
	of coal.

Suggested Readings:

Condie, K. C., 1997: Plate Tectonics and Crustal Evolution, Butterworth & Heimnemann.

Keary, P. and Vine, F. J., 2000: Global Tectonics, Blackwell Science.

Cox, A., 1996: Plate Tectonics. Blackwell Science.

Billings, M. P., 1972: Structural Geology, Prenticie Hall.

Davis, G. H. 1984: Strucutural Geology, John Wiley.

Ghosh, S. K. 1995: Structural Geology-Fundamentals and Modern Developments, Pergamon Press.

Meyerhoff, et al., 1996: Surge Tectonics, Kluwer Academics.

Bell, F. G., 1998: Environmental Geology, Blackwell.

Bell, F. G., 1999: Geological Hazards, Routledge, London.

Subramanian, V., 2001: Text Book on Environmental Science, Narosa International.

Gunter, F., 1991: Principles and Applications of Inorganic Geochemistry, Prentice Hall.

Albarede, F., 2003: Geochemistry - An Introduction, Cambridge.

Marshal, C. P. and Fairbridge, R. W., 1999: Encyclopaedia of Geochemistry, Kluwer Acadmic.

William, L., 1998: Introduction to Geophysics, Cambridge.

Todd, D. K., 1980: Groundwater Hydrology, John Wiley.

Karanth, K. R., 1987: Groundwater assessment, Development and Management, McGraw Hill.

Note for Paper setter

The format of the question papers shall be as per the revised format in vogue in the university since 2013. A sample copy of the question paper shall be provided to the examiner for reference and guidance.

Course content an no of Lectures distribution for practical course

A. Field Work (C-1)	Minimum
Geological mapping, making structural and lithological data (Dip, Strike,	15 dave
lithology), Preparation of sketches lithologs and fossils collection if any available.	15 uays
B. Field Work (C-2)	5L
Preparation of Report (the assigned no of lectures will be utilized for guiding the	-
students in the preparation of the field work report)	
C. Laboratory Work	10L
Maps: Strike, true dip and Apparent dip problems; Measurement of thickness and	
width of outcrops; Completion of outcrops in geological maps; and	
Drawing of profiles and study of geological maps (10 maps)	
D. Project assignment on any one of the following topics (the assigned no of	10L
lectures will be utilized for guiding students in the preparation of the	-
assigned topics):	
I. Geochemical classification of elements	
II. Convection currents within earth.	
III. Gravity structure of the earth.	
IV. Seismic structure of the earth.	
V. Hydrological properties of the rocks.	
VI. Plate tectonics.	
VII. Tectonic structure of the Himalayas.	
VIII. Landslides.	
IX. Hydrological cycle.	

Marks Distribution for practical course

Internal Practical:

25 Marks

This will include field work of 10 marks, lab work of 5 marks and project assignment on any one of the above listed topics of 10 marks. Field work will have two components: C-1 will be the part of the work to be conducted in the field, and C-2 will be the preparation of the field work report.

External Practical25 Marks

This will include laboratory work of 10 marks, fieldwork report (C-1 and C-2) of 10 marks, and viva voce of 5 marks. Duration of the examination will be four hours including viva-voce.

Field work will form a compulsory component of practical and should be of at least 15 days duration. The marks for C-1 of the fieldwork will be given internally by the teacher incharge of the fieldwork and will be added to the marks secured in the project assignment to pass the internal practicals.

In case of regular students the internal assessment received from the college will be added to the marks obtained by a student in the university examination, and in the case of private candidates, marks obtained by a student in the university examination shall be increased proportionately in accordance with the statutes/ regulations.

-----X------X-------